EHJ 2008年12月1日
Coronary heart disease
Novel biomarkers in early diagnosis of acute myocardial infarction compared with cardiac troponin T
Conor J. McCann, Ben M. Glover, Ian B.A. Menown, Michael J. Moore, Jane McEneny, Colum G. Owens, Bernie Smith, Peter C. Sharpe, Ian S. Young, and Jennifer A. Adgey
Aims: To evaluate the role of novel biomarkers in early detection of acute myocardial infarction (MI) in patients admitted with acute chest pain.
Methods and results: A prospective study of 664 patients presenting to two coronary care units with chest pain was conducted over 3 years from 2003. Patients were assessed on admission: clinical characteristics, ECG (electrocardiogram), renal function, cardiac troponin T (cTnT), heart fatty acid binding protein (H-FABP), glycogen phosphorylase-BB, NT-pro-brain natriuretic peptide, D-dimer, hsCRP (high sensitivity C-reactive protein), myeloperoxidase, matrix metalloproteinase-9, pregnancy associated plasma protein-A, soluble CD40 ligand. A 12 h cTnT sample was also obtained. MI was defined as cTnT 0.03 µg/L. In patients presenting <4 h of symptom onset, sensitivity of H-FABP for MI was significantly higher than admission cTnT (73 vs. 55%; P = 0.043). Specificity of H-FABP was 71%. None of the other biomarkers challenged cTnT. Combined use of H-FABP and cTnT (either one elevated initially) significantly improved the sensitivities of H-FABP or cTnT (85%; P 0.004). This combined approach also improved the negative predictive value, negative likelihood ratio, and the risk ratio.
Conclusion: Assessment of H-FABP within the first 4 h of symptoms is superior to cTnT for detection of MI, and is a useful additional biomarker for patients with acute chest pain.
Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction
Mortimer Korf-Klingebiel, Tibor Kempf, Thomas Sauer, Eva Brinkmann, Philipp Fischer, Gerd P. Meyer, Arnold Ganser, Helmut Drexler, and Kai C. Wollert
Aims: Results from clinical trials suggest that cardiac function after acute myocardial infarction (AMI) can be enhanced by an intracoronary infusion of autologous unselected nucleated bone marrow cells (BMCs). Release of paracrine factors has been proposed as a mechanism for these therapeutic effects; however, this hypothesis has not been tested in humans.
Methods and results: BMCs and peripheral blood leucocytes (PBLs) were obtained from 15 patients with AMI and cultured in serum-free medium to obtain conditioned supernatants (SN). BMC-SN stimulated human coronary artery endothelial cell proliferation, migration, and tube formation, and induced cell sprouting in a mouse aortic ring assay. Moreover, BMC-SN protected rat cardiomyocytes from cell death induced by simulated ischaemia or ischaemia followed by reperfusion. While PBL-SN promoted similar effects on endothelial cells and cardiomyocytes, BMC-SN and PBL-SN in combination promoted synergistic effects. As shown by ProteinChip and GeneChip array analyses (each performed in triplicate), BMCs and PBLs expressed distinct patterns of pro-angiogenic and cytoprotective secreted factors.
Conclusion: Our data support the paracrine hypothesis and suggest that characterization of the BMC secretome may lead to an identification of factors with therapeutic potential after AMI.