流式细胞术--常用荧光素
流式细胞仪接收到的荧光信号来源于结合在样品细胞上的荧光素,荧光素偶联抗体或者荧光染料与细胞结合后就会使细胞带有相应的荧光素,该荧光素被相应激光激发后产生特定波长的荧光,分析该荧光信号的强弱就可以间接反映样品细胞的某些特征。
荧光素
荧光素(fluorochrome)多是一些化学试剂,有天然的、半天然的,也有人工合成的;还有些是蛋白质。荧光素在未被激发时外层电子处于基态,当被特定波长的激光激发后,外层电子接收到足够的能量就会跃迁到激发态,处于激发态的荧光素外层电子不稳定,会自发从激发态回到基态,同时释放出特定波长的荧光。这就是荧光素产生荧光的原理。
不同的荧光素有其特定的激发光和发射光,所以,流式分析时可以同时标记发射不同波长荧光的荧光素。这些荧光素被激发后发射的荧光被不同的荧光通道接收,它们之间的信号采集和分析不会相互干扰,从而使多荧光通道分析成为可能。
流式细胞术发展到现在,已经有很多种荧光素被用于流式分析。
一般荧光素
应用于流式细胞术的常用荧光素总结于下表中。

CFSE全称为羟基荧光素乙醋酸盐瑰珀酰亚胺脂;
注:该表不包括Alexa Fluor系列和QD系列荧光素。
FITC是流式细胞术最常用的荧光素,该荧光素较为稳定,与FITC偶联的流式抗体种类也最多。FITC由最常见的488nm激光器激发,其发射的荧光信号被第一荧光通道(FL1)接收。流式细胞术单色分析时常用FITC偶联的抗体。PE荧光素使用也较为广泛,也是由488nm激光器激发,发射的荧光信号通常被荧光通道FL2接收,其荧光信号较强,适用于弱表达的抗原分子的分析。流式细胞术双色分析时通常采用FITC和PE荧光素。
单激光器的流式细胞仪一般配备488nm激光器,可以同时进行3色分析,即有3个荧光通道,FL1接收FITC的荧光信号,FL2接收PE的荧光信号,FL3可以接收Percp或者PE-Cy5的荧光信号。因为Percp和PE-Cy5的荧光信号是被同一个荧光通道接收的,所以在流式分析时,不能同时使用这两种荧光素偶联的抗体。
APC也是较为常用的荧光素,其荧光信号也很强,同样适用于弱表达的抗原分子的分析,但是它不能由488nm激光器激发,而只能由635nm红激光器激发,所以488nm单激光器的流式细胞仪无法分析APC的荧光信号。如果流式细胞仪同时配备有635nm红激光器,就可以使用APC荧光素。如BD公司的LSRⅡ分析型流式细胞仪,可以同时进行4色分析,FL4接收的就是APC的光信号。
PE-Txred、PE-Cy7和APC-Cy7荧光素不常使用,一般只能在有更多荧光通道的流式细胞仪如9通道或者12通道的流式细胞仪上使用。
CFSE和PKHI26荧光素不与抗体偶联,而是单独使用,CFSE能够与细胞膜上和细胞内的蛋白质非特异性结合,PKH26能够嵌入细胞膜的双分子层中,用于细胞示踪和检测细胞增殖等。
(E)CFP、(E)GFP和(E)YFP为指示蛋白,其中(E)GFP最为常用,常将其整合于基因组中,用于非特异性指示该转基因小鼠的所有细胞或者特异性指示某种细胞;(E)CFP和(B)YFP是一对理想的能够实现荧光共振能量转移的荧光素,可以用于检测蛋白质与蛋白质的直接结合。
Hoechst3312可标记活细胞,多用于分选侧群干细胞。
PI荧光素用于检测细胞的DNA含量,可用于细胞周期检测,此外PI也可用于区分活细胞和死细胞。
7-AAD用于标记死细胞,在需要明确区分活细胞和死细胞时使用。
TMRE对线粒体膜电位敏感,膜电位下降时结合减少,细胞调亡通常伴随着线粒体膜电位的下降,所以TMRE可以通过指示线粒体膜电位的变化检测细胞调亡。
FAM在水中稳定,主要用于DNA自动测序,也可用于PCR产物定量和核酸探针等。
Fluo4是化学荧光钙离子指示剂,最常用于流式检测细胞内游离的钙离子水平。
SNARF-AM对细胞内pH敏感,可用于流式检测细胞内pH,被488nm激光激发后能够发射640nm和575nm左右的两种荧光,两种荧光信号强度的比值与细胞内的pH呈一定的比例关系。
Alexa Fluor 系列染料
近年来,出现了一种名为Alexa Fluor 的系列染料,与一般荧光素相比,它具有多种优点:①比一般荧光素更亮,信号更强,更适用于弱表达抗原分子的检测分析;②光稳定性更强,不易被漂白;③仪器兼容性好,可以被常规配备的激光器激发;④ Alexa Fluor系列染料多达17种,这些染料发射波长从近紫外到近红外,选择范围广;⑤对pH耐受性更强,可以在更宽pH范围内保持其光稳定性;⑥水溶性好,无需有机溶剂就可直接结合蛋白质,而且长期储存也不易产生沉淀。
Alexa Fluor系列染料的光谱特性见下表。其中很多种荧光素可以替代目前使用的荧光素,是更具竞争性和发展前景的荧光素,如最具有代表性的Alexa Fluor488可以替代最常用的流式荧光素FITC,具有亮度更高pH耐受性更好、光稳定性更好的优点。

无机荧光素QD
以上介绍的都是有机荧光素,随着纳米技术的发展,最近还出现了无机荧光素QD(quantumdot)。QD由半导体纳米晶体组成,目前有8种供流式检测选用,根据QD发射光的平均波长来命名,分别为QD525、QD545、QD565、QD585、QD605、QD655、QD705和QD800。QD发射光波长与其纳米晶体核心的大小有关,QD525核心最小,只有4nm,QD800核心最大,为8nm。
QD对于激发光的波长要求较低,原则上只要低于其发射光波长的激光即可,而且激发光的波长越小效果越好,所以,常规使用的488nm激光器就可激发上述8种QD,而408nm紫激光器激发的效果要比488nm激光器好。
与常规使用的有机荧光素相比,QD无机荧光素具有以下几个优点:①QD对于激发光的波长要求低,只要低于其发射荧光波长的激光都可以激发,所以多色分析时不需配备多个激光器,一个激光器就可激发所有8种QD;②QD发射的荧光信号很集中,波长范围较窄,其信号基本都能被对应的接收通道接收,很少会被相邻的非接收通道接收,所以使用QD时荧光通道之间的补偿很小;③QD发射的荧光信号与常规的有机荧光素发射的荧光信号波长范围基本不会交叉,所以QD基本不会与常规有机荧光素共用荧光通道,可以较为理想地与各种常规有机荧光素同时使用,进行多色流式分析;④QD化学性质更为稳定,不易被各种酶降解,其发射荧光信号的能力也很稳定,很少发生光漂白。
最后编辑于 2022-10-09 · 浏览 4932