相关文献分享
1. 题目:人类胚胎期小胶质细胞在发育中的特异性
小胶质细胞是中枢神经系统的常驻髓细胞,维持组织稳态和病理修复。在稳态下,小胶质细胞时刻巡视周围环境的变化,并表达参与监测和免疫感觉功能相关的受体(感受体)。小胶质细胞在中枢神经系统发育中起着重要作用,早期环境干扰影响小胶质细胞的功能,可能会对中枢神经系统的发育和功能产生长期影响。在小鼠中,小胶质细胞在胚胎期第7.5天,出现在胚外卵黄囊中的早期红髓样祖细胞,随后在胚胎期第9.5天定植于发育中的脑雏形。小鼠小胶质细胞的发育伴随着基因表达和表观遗传谱的变化。因此在胚胎发育和出生后早期阶段,小鼠小胶质细胞存在异质性。在人类中,小胶质细胞在妊娠周期的4.5周出现在脑膜、脑室边缘和脑鞘丛中,并从这些位置迁移到端脑和间脑。在此过程中,小胶质细胞逐渐的发育成为分枝状形态,最早出现在妊娠期的12周。已有研究表明,小鼠和人类小胶质细胞都是发育基因表达特征,但目前缺乏对人类胚胎时期小胶质细胞发育异质性的深刻认识。
本文采用小胶质细胞的单细胞测序(scRNA-seq)和染色质开放性测序(ATAC-seq),观察人类胎儿发育的9~18孕周的小胶质细胞发育的调控机制。研究表明胎儿时期的小胶质细胞具有高度异质性,且在妊娠期小胶质细胞开始成熟,并具有类似的增殖、糖酵解和活化吞噬能力的功能。发育过程中染色质复杂度增加,增加感觉体基因的表达(增加对周围环境的监视能力)。因此,在早期胎儿发育过程中,小胶质细胞开始向更成熟的、具有免疫感觉能力的表型发展,这可能就是发育中的人类中枢神经系统在妊娠早期易受环境干扰的重要原因。

评语:
小胶质细胞是驻留在中枢神经系统的髓细胞,对大脑发育的稳态至关重要。小胶质细胞是一个自我维持的群体。前期主要对小鼠中小胶质细胞的发育研究较多,且表明不同的基因调控网络驱动小胶质细胞的增殖、分化和成熟。本文针对胎儿时期的小胶质细胞发育进行深入的探讨,发现胎儿小胶质细胞是高度异质的。它们从妊娠期13周开始逐渐成熟,受到复杂的通用调控网络的活动的调节,并且在妊娠中期已经显示出成熟的人类小胶质细胞的功能特性。这解释了人类中枢神经系统在怀孕期间的易受环境干扰,并可能产生长期后果的原因。

关键词:
Microglia, Immune, Gestational weeks, Chromatin accessibility
文章链接 DOI:
10.1126/science.aba5906
PMID:
32732419
Abstract:
Microglia, immune cells of the central nervous system (CNS), are important for tissue development and maintenance and are implicated in CNS disease, but we lack understanding of human fetal microglia development. Single-cell gene expression and bulk chromatin profiles of microglia at 9 to 18 gestational weeks (GWs) of human fetal development were generated. Microglia were heterogeneous at all studied GWs. Microglia start to mature during this developmental period and increasingly resemble adult microglia with CNS-surveilling properties. Chromatin accessibility increases during development with associated transcriptional networks reflective of adult microglia. Thus, during early fetal development, microglia progress toward a more mature, immune-sensing competent phenotype, and this might render the developing human CNS vulnerable to environmental perturbations during early pregnancy.
2. 解析小鼠和人类小胶质细胞的时空特异性
小胶质细胞在中枢神经系统的发育和功能稳态的维持发挥重要作用。小胶质细胞功能的异常与中枢神经系统的神经退行性和神经炎症疾病密切相关,而小胶质细胞的形态多样性和功能特化性可能由不同亚群的小胶质细胞执行或同质的特化的小胶质细胞亚群执行。然而有关在发育或疾病过程中,中枢神经系统小胶质细胞在空间和时间上的异质性研究较少。以往采用小胶质细胞单细胞测序研究,局限于分选出的髓样细胞群或全脑细胞的检测,而忽视了小胶质细胞发育的时空有特异型。
本研究利用大规模数量的单细胞测序、单分子荧光原位杂交、高级免疫组化和计算模型等方法,全面描述发育和疾病期间中枢神经系统多个脑区小胶质细胞的亚类。作者观察了不同分子标记和不同细胞动力学的小胶质细胞亚型。观察时期包括胚胎期,青春期和成年期,研究的大脑区域包括小脑,脊髓,前脑,中脑,还比较了在稳态和疾病状态下,小胶质细胞亚群的变化。研究表明脱髓鞘和神经退行性疾病诱发情境依赖性小胶质细胞亚型具有不同的分子标记和不同的细胞动力学。健康人的大脑和多发性硬化症患者的大脑中也发现了相应的小胶质细胞簇。小胶质细胞亚型的出现及其特有的转录谱有可能揭示新的治疗靶点。此外,本研究通过建立健康、患病啮齿动物和人类小胶质细胞异质群体的转录谱,这可能为中枢神经系统疾病的发病机制提供新的见解。
评语:
本研究运用多种检测方法,及多个脑区及不同发育阶段的小胶质细胞亚群的分析,显示了特定的时间和区域依赖性小胶质细胞亚型。本研究为中枢神经系统在发育、稳态和疾病过程中的内源性免疫系统提供了深入的见解,也为神经退行性和神经炎症病理的治疗提供新的靶点。
关键词:
Microglia, spatial-temporal, Heterogeneity, Neurodegenerative
文章链接 DOI:
10.1038/s41586-019-0924-x
PMID:
30760929
Abstract
Microglia have critical roles not only in neural development and homeostasis, but also in neurodegenerative and neuroinflammatory diseases of the central nervous system. These highly diverse and specialized functions may be executed by subsets of microglia that already exist in situ, or by specific subsets of microglia that develop from a homogeneous pool of cells on demand. However, little is known about the presence of spatially and temporally restricted subclasses of microglia in the central nervous system during development or disease. Here we combine massively parallel single-cell analysis, single-molecule fluorescence in situ hybridization, advanced immunohistochemistry and computational modelling to comprehensively characterize subclasses of microglia in multiple regions of the central nervous system during development and disease. Single-cell analysis of tissues of the central nervous system during homeostasis in mice revealed specific time- and region-dependent subtypes of microglia. Demyelinating and neurodegenerative diseases evoked context-dependent subtypes of microglia with distinct molecular hallmarks and diverse cellular kinetics. Corresponding clusters of microglia were also identified in healthy human brains, and the brains of patients with multiple sclerosis. Our data provide insights into the endogenous immune system of the central nervous system during development, homeostasis and disease, and may also provide new targets for the treatment of neurodegenerative and neuroinflammatory pathologies.