【bio-news】微生态对免疫功能的维持作用
Gaboriau-Routhiau et al. have addressed this issue by comparing germ-free and normally colonized mice. They found that commensal microbiota were critical for maintaining T cell homeostasis in the gut. Germ-free mice exhibited altered gene expression profiles of cytokines and transcription factors that were associated with T helper cell–mediated immune responses. Recolonization with microbiota derived from mouse fecal matter restored normal expression patterns. Surprisingly, this effect was largely restricted to one strain of bacteria: the segmented filamentous bacteria (SFB). Similar findings were obtained by Ivanov et al., who demonstrated the effects of SFB on interleukin 17–producing T helper cell responses. Thus, these results indicate that T cell immunity is regulated by both host- and microbiota-derived factors and that microbes may actively shape T cell populations in the gut.
http://www.sciencemag.org/content/vol326/issue5958/twil.dtl
原文
Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N. 2009. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009 Oct 16;31(4):677-89.
Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria.Cell. 2009 Oct 30;139(3):485-98.