dxy logo
首页丁香园病例库全部版块
搜索
登录

【原创】做Cox生存分析的心得体会(下)

肿瘤科医师 · 最后编辑于 2022-10-09 · IP 广东广东
2.0 万 浏览
这个帖子发布于 20 年零 46 天前,其中的信息可能已发生改变或有所发展。
筛选变量的方法:第一步,结合临床,临床认为有关的变量均筛选出来。第二步.应用双变量的相关分析,把显著相关的变量筛选出来,保留临床意义更大的那个。第三步,应用Kaplan-Meier法对每个危险因素的两个暴露水平做生存曲线,若曲线存在交叉,则不能应用Cox生存分析(Cox生存分析也称比例风险回归,它包含一个假定,即在随访期间暴露于预后因素与非暴露的风险比例维持恒定),这类变量需应用更复杂的非比例风险回归模型,这里将不详述了。第四步,单因素分析。可应用COX生存分析的第0步结果作为单因素分析的结果。可在SPSS的Cox回归里选择任何一种前进法,在Option中选择at each step,取因子筛选第0步的Score检验结果作为单因子Cox回归分析的结果。也有文章的单因素分析对于离散型变量应用卡方检验和连续型变量应用t检验,等级资料应用双变量相关分析。
最后,将进行Cox回归分析。应用SPSS中analysis-survival-cox regression.在time一栏中选择生存时间;在state一栏中选择数据状态(在数据编码中已经介绍),在激活的define event一栏中设定single value为1。这里要强调几个小问题:1,SPSS可以支持研究者做两个或以上的变量的共同效应,需在主对话框中同时选中需研究的变量两个或两个以上,这样协变量框中的>a*b>才会被激活。2,分类变量,在这里被称为哑变量,需单击categorical,然后将分类变量选入对话框。
最后得到的结果,B为协变量的系数,Exp(B)为相对危险度。可得到比例风险模型:h(t,x)=h0(t)exp(Σβ ixi)公式1-1
预后指数也称预后得分,PI(prognostic index)= (Σβ ixi)
PI=0代表危险率处于平均水平,PI<0,代表危险率低于平均水平;PI>0,代表危险率高于平均水平。由公式1-1可以求得全部病人的预后指数。将所有的预后指数做等级变换,例如分组的界点PI=-1,0,1,以PI为分类变量做COX回归,并估计生存率,便获得预后指数分类生存率,若样本量很大,或代表性比较好,可用内插法分别估计不同预后指数水平的人群的k年生存率,以及中数生存期,编制成参照表,便可用于临床,根据每个病人的PI值,预测其存活k年的概率,以及期望的生存年数。最后一段摘自方积乾主编的第二版《医学统计学与电脑试验》。如果我们能够象国外一样做大规模多中心前瞻的研究,我一定要做到最后一步。



7 271 24

全部讨论(0)

默认最新
avatar
7
分享帖子
share-weibo分享到微博
share-weibo分享到微信
认证
返回顶部